Profile Image

analyticsconsultingpunch

Joined Saturday, May 02, 2015
Statistics
4 weeks all time
books registered 0 0
released in the wild 0 0
controlled releases 0 0
releases caught 0 0
controlled releases caught 0 0
books found 0 0
tell-a-friend referrals 0 0
new member referrals 0 0
forum posts 0 0
Extended Profile
Data Mining And Modelling
Information model: what information will be obtainable and how will it flow?

Information gathering: how will data be gathered both in physical and technological terms?

Data gathered: what data will be gathered?

Data kinds: what types of information will be gathered?

Data formatting: how will information be held?

Data warehousing: where will data be held?

Information mining: how will we retrieve data from th...

The critical processes that have to be obviously delineated for Data Mining, Analysis and Modelling are:

Information model: what data will be accessible and how will it flow?

Data gathering: how will data be gathered both in physical and technological terms?

Information gathered: what data will be gathered?

Information varieties: what varieties of data will be gathered?

Data formatting: how will information be held?

Information warehousing: exactly where will data be held?

Information mining: how will we retrieve data from the warehouse?

Data modelling: how will we create models and what of?

Information access: how will we access the information models and reports?

Presentation & reporting: on what will we report?

Most firms want to know important information about clients at every point of speak to, for instance:

Lifetime value

X sell and upgrade possible

Acquisition price

Channel preferences

Loyalty/retention

Obtain behaviour patterns

Much of the data that they have will have various frequencies of modify, refreshment or occurrence. It will be kept for distinct periods. Discover further about bigdata analytics by browsing our pictorial encyclopedia. In some situations, aggregated information may be kept rather than supply data. All of these variables impact the information modelling exercising and the eventual modelling computer software requirements.

Turning the information into valuable data calls for:

Identifying the situation(s)

Assembling the data set(s)

Developing models

Verify models

Interpretation of the outcomes

Automation of the delivery

Thereafter, modelling tools and strategies have to be used. These can be divided into two groups: theory driven and data driven.

Theory driven modelling (hypothesis testing) attempts to substantiate or disprove preconceived tips. Theory driven modelling tools demand the user to specify most of the model based on prior information and then tests to see if the model is valid.

Data driven modelling tools automatically create the model based on patterns they discover in the information. We discovered big data analytics for retail info by searching Google. This also demands to be tested before it can be accepted as valid.

Modelling is an iterative process with the final model normally being a combination of prior information and newly found info. The engine(s) tools and methods contain:

Statistical strategies

Data driven tools

Correlation

Cluster evaluation

t-tests

Aspect evaluation

Evaluation of Variance

CHAID (Chi-square Automatic Interaction Detector) decision trees

Linear regression

Visualisation tools

Logistic regression

Neural networks

Discriminant evaluation. Browse here at the link big data analytics solution to discover when to see about this belief. Discover extra information on data analytics solutions by visiting our pictorial link.United States

Are you sure you want to delete this item? It cannot be undone.